Manosox ${ }^{\text {² }}$

INSTALATION MANUAL

CABLE SUSPENSION SYSTEM

The material required to install DurkeeSox air dispersion system includes: DurkeeSox duct segment
and its fittings (inlet, endcap T-connector elbow, transition, etc). components (FAF-Fabric airfiler and its fittings (inlet, endcap, T-connector, elbow, transition, etc.), components (FAF-Fabric air filter
Fabric static plenum box, etc.) and accessories (cable, eyebolt, turnbuckle, thimble, cable clamp, rubber jacket, etc.), which are supplied by the manufacturer (shipped with, the consignment, including installation drawing, installation manual and assembly drawing, etc.) Other installation auxiliaries
required on the jobs ite, such as fixing brackets and fastening screws shall be purchased by the installation contractor.

Installation Manual of Cable Suspension System

Schematic Drawing of Cable Installation System

Installation Fittings
Although the whole installation of DurkeeSox system is quite easy, attention must be paid to the details: locating dimensions and straightness of cable installation, inlet installation angle, etc. Otherwise, they
would affect the appearance of DurkeeSox system despite of no influence on ventilation.

CONTENTS

1 Basic introduction to installation style 03-06
1.1 Type of cable suspension system
1.2 Types of Brackets
1.3 Type of Inlet
1.4 Type of inlet connection
1.5 Irregular fittings and installation

2 Preparation and calculation before installation
2.1 Preparation of installation tools
2.2 Construction drawing and components calculation
2.3 Engineering solution

3 Installation procedure and implementation
3.1 Make bracket
3.2 Unpacking
3.3 Installation of cable suspension system
3.4 Inlet installation
3.5 Hanging duct
3.6 Ventiation and suspension adjustment

1 BASIC INTRODUCTION OF INSTALLATION STYLE

1.1 Type of cable suspension system

Cable suspension system can be classified according to the number of suspension rows and suspension direction
1.1.1 According to number of suspension rows, there are three types of suspension.

Single-row cable suspension is recommended for smalle diameter, or without stric during inflation and deflation. The direction of suspension clips is a 12 o'clock.

Double-row suspension Multi-row suspension

Double-row cable suspension system is suggested for large diameter duct. Lt's also recommended
for ducts used in limited space or with asymmetrical orifices.

Multi-row cable suspension is recommended for rectangle system at the occasion with large airflow but smaller installation space, by the rectangle width. Usually, the spacing between tension cables is not more than 20", which can be distributed uniformly.
1.1.2 According to the suspension direction, there are three types

The strap length is $3 \frac{1}{2}$ " $(90 \mathrm{~mm})$. In special cases, the suspension direction can be defined by the user.
Note: if no direction is defined in the construction specification, the direction is 12:00 for single-row, 2:00 and 10:00 for double-row. Other directions will be specified.
1.2.1 Triangle bracket

1.2.2 Direct-rod bracket

Wire cables for buffering pressure

1.2.3 Wall bracket

Usually made of angle iron
or channel steel, wall bracket is the most suitable
and economized method of bracket when applicable.
Triangle bracket is usually made of angle iron Channel steel or square
steel may also be used as triangle bracket when it is long in height direction.

Abstract

The cable for buffering same types of wire cable and component with the Two wire cables wire Two demanded to buffer the pressure and connected with two bracket arm respectively. One end o the cable is connected with components being fixed on the arm of bracket where undertake the pressure, anothe end is connected with the end is connected with the fixed point on the building fixed point on the building structure like the surface of wall or top, beam, stee Therefore, a cant triangle is created. Direct-rod bracket is usually used when the height is very limited. We suggest this bracket be made of channel steel o square steel.

1.2 Types of Brackets

The bracket in cable suspension system is used to straighten cable and mounted onto the architectural structure (roof, beam, steel structure girder and wall).

The bracket of the DurkeeSox cable suspension system shall be as firm \& simple as possible. According to the bracket height on the jobsite and the length of the tension cable, the bracket is usually made of angle iron, channe steel or square steel
According to the installation position on the jobsite, there are three kinds of supporting: triangle, direct rod and special form, which shall be determined supporting. triangle, irire
1.2.4 Tripod fixed on girder of steel frame
1.5 Irregular fittings and installation 1.5.1 General irregular fittings

Horizontal T-connection

1.5.2 Functional irregular fittings

Without cooperation of ducts made of other material through the wall and keep aesthetic appearance under no ventilation.

Upright elbow

Transition

1.5.2.2 Expansion Segment

Employing specially-combined hasp design, they can avoid various performance and aesthetic problems
caused by the error between the actual size and the designed size of project.
2.1 Preparation of installation tools

Common tools for DurkeeSox installation

Special tool: cable tightener

2.2 Construction drawing and accessories calculation
2.2.1 Make detailed construction drawing according to the design layout of DurkeeSox system

Note: installation drawing can be made faster and better by using our special isox-design software.
Make construction drawing: it shall be able to indicate how and where to install the bracket of each duct length as well as the installation height of and spacing between tension cables. Accessories calculation shall be based on precise length, installation height and position.

How to calculate each kind of accessory in the table:
Eyebolt. .2 for each row of tension cable in each duct.
Turnbuckle
 2 for each row of tension cable in each duct.
5 for each row of tension cable in each duct (excluding cable clamps for hanging point. $3 / 16$ " 5 mm) tension cable $\quad 2$ ength of tevery hanging point)
$1 / 16^{\prime \prime}(2 \mathrm{~mm})$ suspension cable \quad satarion on the jobsite is determined, the actual one shall prevail.
1/16"(2mm) suspension cable Every 26.2 2t set up one suspension point, the total length is calculated by the quantity of suspension cable x suspension height.
For ventilation only, since the metal duct outlet does not need insulated. Rubber jacke The length of rubber jacket is detetemined as ofolows: perimeter of each inlet $\times 1.05$
2.2.3 Calculate suspension height and spacing of tension cable per duct diameter

Use 90 mm ($3 \frac{1}{2}$ ") snap clip for duct diameter

Spacing and height table of tension cable per duct diameter

$\begin{gathered} \text { Dia } \\ (\text { inch } \mathrm{mm}) \end{gathered}$		2: 00 \& 10: 00				3:00 \& 9:00			
		cable spacing				cable spacing		height from cabletop of duct	
6	152		131						
8	203	$6 \frac{3}{4}$	175	-1-5	-40	8	203	$\frac{7}{16}$	12
10	254	$8{ }^{\frac{5}{8}}$	219	-1	-27	10	254	$1 \frac{1}{2}$	37
12	305	$10^{\frac{3}{8}}$	264	- $\frac{1}{2}$	-14	12	305	$1{ }^{\frac{7}{16}}$	63
14	356	12	308	$-\frac{1}{16}$	-1	14	356	$3 \frac{7}{16}$	88
16	406	$13 \frac{3}{4}$	351	$\frac{7}{16}$	11	16	406	$4 \frac{1}{2}$	113
18	457	$15 \frac{5}{8}$	395	1	24	18	457	$5 \frac{1}{2}$	139
20	508	$17 \frac{1}{4}$	43	$1 \frac{1}{2}$	37	20	508	$6 \frac{1}{2}$	164
22	559	19	484	2	50	22	559	$7 \frac{1}{2}$	190
24	610	$20 \frac{3}{4}$	528	$1{ }^{17}$	62	24	610	$8 \frac{1}{2}$	215
26	660	$22 \frac{1}{2}$	571	3	75	26	60	$9 \frac{1}{2}$	240
28	711	$24 \frac{1}{4}$	615	$3{ }_{16}^{7}$	88	28	711	$10^{\frac{1}{2}}$	266
30	762	$25 \frac{5}{8}$	659	4	100	30	762	$11^{\frac{1}{2}}$	291
32	81	$27 \frac{1}{2}$	704	$4 \frac{3}{8}$	113	32	813	$12 \frac{1}{2}$	17
34	864	$29^{\frac{3}{8}}$	748	5	126	34	864	13.7	342
36	914	$31 \frac{1}{8}$	791	$5 \frac{3}{8}$	138	36	914	$144^{\frac{7}{16}}$	367
38	965	$32 \frac{7}{8}$	835	515	151	38	965	$15 \frac{1}{2}$	393
40	1016	$34 \frac{9}{16}$	879	$6 \frac{1}{2}$	164	40	1016	16.7	418
42	1067	$36 \frac{7}{16}$	924	7	177	42	1067	$17 \frac{1}{1}$	444
44	1118	$38 \frac{1}{8}$	968	$7 \frac{3}{8}$	189	44	1118	$18 \frac{7}{16}$	469
46	11	$39^{13} 1{ }^{13}$	1011	8	202	46	1168	$19{ }^{\frac{7}{16}}$	494
48	1219	$41 \frac{1}{2}$	1055	$8 \frac{1}{2}$	215	48	1219	$20 \frac{7}{16}$	520
50	1270	$43 \frac{5}{16}$	1099	$8 \frac{15}{16}$	227	50	1270	$21 \frac{7}{16}$	545
52	1321	45	1143	$9 \frac{1}{2}$	240	52	1321	$22 \frac{1}{2}$	571
54	1372	$461 \frac{13}{16}$	1188	10	253	54	1372	$23{ }^{\frac{7}{16}}$	596
56	1422	$48 \frac{1}{2}$	231	$10 \frac{3}{8}$	265	56	1422	24.7	621
58	1473	$50 \frac{3}{16}$	1275	1015	278	58	1473	$25 \frac{1}{2}$	647
60	1524	51.15	1319	$11^{\frac{3}{8}}$	291	60	1524	$26{ }^{\frac{7}{16}}$	672
62	1575	$53 \frac{11}{16}$	1363	12	304	62	1575	$27 \frac{1}{2}$	698
64	1626	$557 \frac{7}{16}$	1408	$12 \frac{3}{8}$	316	64	1626	$28 \frac{7}{16}$	723
66	1676	$57 \frac{1}{8}$	1451	13	329	66	1676	$29 \frac{7}{16}$	748
68	1727	$58{ }^{\frac{15}{16}}$	1495	$13 \frac{1}{2}$	342	68	1727	$30 \frac{1}{2}$	774
70	1778	$60 \frac{5}{8}$	1539	14	354	70	1778	$31 \frac{7}{16}$	799
	1829	$62 \frac{5}{16}$	1583	$14 \frac{3}{8}$	367	72	1829	$32 \frac{1}{2}$	825

2.3 Engineering Solution

According to jobsite condition and progress of each type of work, figure out the installation time, determine the type and size of bracket and materials needed for installation. Make construction plan, including workers, model, size, quantity of materials,
3.1 Make bracket

3.2 Unpacking

Each duct segment of standard length has been put into a plastic bag containing a product installation and
assembly drawing, which has the information on the corresponding duct diameter, length, orifices orientation and the specific position for installation. Furthermore, there is a label at the inlet or near the zip of each duct segment, The label indicates the diameter, length, duct code and segment number of the duct.
3.3 Installation of cable suspension system
3.3.1 Locating and mounting of bracket

Determine the spacing and height of tension cable according to height and diameter of each metal duct outlet. Determination of bracket spacing requires that the front and the rear brackets of the same DurkeeSox system should be mounted parallel and symmetrically without any deflection.
3.3.2 Installation of cable suspension and mounting accessories
3.3.2.1 Measurement and cutting

3.3.2.2 Cable header making

3.3.2.3 Connection between tension cable and bracke

5 Connect tension cable with full-open

Note: Loose turnbuckle to the maxima when mounting cable suspension system to adjust the straightness of tension cable when under heavy load after installation of DurkeeSox system.
3.3.3 Fabrication and installation of hanging points

Determination of the quantity of hanging points and location for installation: make suspender with $1 / 16^{\prime \prime}(2 \mathrm{~mm})$ cable. 1 hanging point every 23-33ft ($7 \sim 10 \mathrm{~m}$) along tension cable.

The fixed point on structure shall be on the same vertical surface as the suspension cable. Make $1 / 16^{\prime \prime}(2 \mathrm{~mm})$ cable suspender
on jobsite, cut $1 / 16^{\prime \prime}(2 \mathrm{~mm})$ cable at a proper length, and fasten each end with a cable clamp.

3.4 Inlet installation

If planned to extend insulation to outlet of metal duct (usually $1 / 4$ " or 5 mm), rubber jacket can be exempted. Rivetting is made as per the spacing of about 6 or 15 mm . duct can be close
Durkeesox duct).

3.6 Ventilation and suspension adjustment

3.6.1 Duct segment adjustment

1. Release the zip at the inlet and start the equipment for ventilation to blow away the dirt existing in the original air-conditioning system.
2. Stop the equipment and close the zip connecting the inlet and duct. Start and run the equipment (Start it with different revs and increase the pressure gradually to avoid damage to the end).
3.6.2 Pressure measurement and air velocity testing

Note:
Forte
For testing \& commissioning, maintenance, system cleaning, please refer to the Maintenance Manual.
\qquad

